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A number of methods are investigated for obtaining a low-dimensional dynamical system
from a set of partial differential equations describing the non-linear vibrations of a shallow
cylindrical panel under periodic axial forcing. In these approaches an initial
(high-dimensional) spatial discretization of a (possibly irregular) domain is performed and
a subsequent procedure is used to further reduce the resulting set of ordinary differential
equations. In particular the results suggest that a numerical method based upon inertial
manifold approximation is possible, but for the specific cases studied, no advantage could
be discerned over more direct dimension-reduction techniques.
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1. INTRODUCTION

The problem is addressed of finding the appropriate mathematical method with which to
analyze the non-linear vibrations of structures of irregular shape. Obviously for irregular
domains, spatial discretization by using finite-element or finite-difference models is routine
but to study the non-linear vibrations of these, the analyst is faced with a model of very
high dimension. The question is therefore: what methods can be used to reduce the
dimension of such models which still retain the essential features of the non-linear
dynamics?

For regular domains the linear vibration modes are usually well-known and provide a
suitable basis for further analysis of non-linear effects. As exemplified by papers such as
those of Holmes and Marsden [1] and Baumgarten et al. [2], a common approach is to
keep only the first few vibration modes (or some similar set of global basis functions
described by known, closed-form, analytical expressions) and to obtain a low-dimensional
dynamical system governed by a few ordinary differential equations (ODEs) by using a
Galerkin projection of the full partial differential equation (PDE) onto the subspace
spanned by these few functions. Standard analytical and numerical techniques of
non-linear dynamical systems theory can then be used manageably to study the
bifurcational behaviour of the (low-dimensional) set of ODEs which approximately
describe the behaviour of the original system. This procedure presumes that the functions
onto which the PDE is projected are sufficient to capture the important features of the
infinite-dimensional dynamical system. An ad hoc way of checking whether the essential
features are captured is to increase the number of modes (or basis functions) until some
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sort of convergence is achieved. This can be a fairly work-intensive process. It is a relatively
simple procedure in a linear statics problem with a unique equilibrium solution: but in a
non-linear dynamical system with multiple steady states which bifurcate as a parameter
is changed, it is much more difficult to establish whether convergence has taken place. It
would require, for example, that the bifurcation structures of different dimensional ODEs
be the same, or at least very similar.

Holmes and Marsden [1] presented more rigorous arguments, based on centre manifold
theory, to justify a finite-dimensional approximation in a panel flutter problem, at least
for bifurcations of the fixed point at the origin. More recent work on low-dimensional
behaviour in PDEs has used the concept of an inertial manifold, which is a
finite-dimensional, positively-invariant, exponentially- and globally-attracting submani-
fold of the phase space. If an inertial manifold exists and can be found for a particular
system then investigating the dynamics is reduced to a finite-dimensional, and therefore
tractable, problem. Practical methods have been proposed for the computation of
approximate inertial manifolds: see, for example, references [3, 4]. These are based on the
usual Galerkin projection method for modal discretization of a PDE. A two-level
projection is attempted in which the modes are split into ‘‘active’’ and ‘‘passive’’ modes.
The passive modes are assumed to be slaved to the active ones and the inertial manifold
describes the form of this slaving. Looked at in this way, the procedure can be seen as
a way of correcting the straight-forward Galerkin projection, and has thus acquired the
name non-linear Galerkin method.

The aim here is to investigate the application of such a two-level projection to a
particular shell model. However, conscious of the need for methods that are suited to
domains of irregular shape, finite differences for the initial spatial discretization are
employed, rather than a decomposition onto a set of analytic global basis functions. The
general approach described here can readily be extended to other spatial discretization
methods.

The model adopted as an example in the following sections is essentially the shell panel
studied by Baumgarten et al. [2]. It has a regular geometrical shape, allowing Baumgarten
et al. to employ global basis functions with results that can be used for comparison.
Obviously, the finite difference approach does not depend upon the regularity of the
domain.

2. THE MODEL

The example model describes the large deflections of a shallow cylindrical panel under
periodic axial loading, as illustrated in Figure 1. The equations, based on Donnell’s shallow
shell theory, are of the form
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Here, w is the normal displacement (positive inward), F is the in-plane Airy stress function
and t is the time. The meridional and circumferential length co-ordinates are x and y,
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respectively. The parameters are as follows: E, Young’s modulus; m, the mass per unit
area; b, the coefficient of proportional damping; b2, the visco-elastic damping coefficient
(see below); R, the radius of the panel; h, the thickness of the panel; a, the length of the
sides of the square panel; D=Eh3/[12(1− n2)], the flexural rigidity of the panel; n,
Poisson’s ratio.

In the numerical simulations, the following values have been adopted: values
E=210×109 N/m2, m=78·5 kg/m2, b=707·1 Ns/m, b2 = b/(16p4), R=8·333 m,
h=0·01 m, a=1·0 m and n=0·3. In addition to equations (1) and (2), boundary
conditions are imposed on the displacement w and the stress function F to define the
problem completely. It is in the boundary conditions for the stress function that the forcing
function is incorporated. The boundary conditions on the displacement, w, are that the
panel is simply supported along each edge. These simplify to

w(x, y)= 12w/1x2 =0 at x=0 and x= a,

w(x, y)= 12w/1y2 =0 at y=0 and y= a. (3)

The boundary conditions on the stress function, F, are

12F/1y2 =−p(t), −
12F

1x1y
=0 at x=0 and x= a,

12F/1x2 =−12F/1x1y=0 at y=0 and y= a. (4)

These impose a compressive stress resultant of p(t) along the x (meridional) direction of
the panel, where

p(t)= p0 + p1 cos (Vt). (5)

Figure 1. The shallow cylindrical panel under periodic axial loading: p(t)= p0 + p1 cos (Vt).
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A conventional eigenvalue analysis of the linearised equations about the trivial solution
w(x, y)=0, F(x, y)=−p0y2/2, gives the static buckling loads (see for example reference
[5])
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with corresponding buckling eigenvectors

w=A sin ( jpx/a) sin (kpy/a). (7)

The critical buckling load for the example panel is thus p0,cr (1, 1)=1525×103 N/m.
Throughout the remaining analysis the static compressive loading is kept fixed at the

value p0 =895×103 N/m, roughly 60% of the buckling load. Further linear eigenvalue
analysis gives the natural frequencies as

v( j, k)=
jp
a Xp0,cr ( j, k)− p0

m
, (8)

and for such a panel of uniform thickness, the buckling and vibration eigenvectors are
coincident. For the chosen value of axial static compressive load p0, this gives a
fundamental frequency v(1, 1)=281·4 s−1 (44·8 Hz). To follow Baumgarten et al. [2], we
fix the excitation frequency for our studies at V=617·9 s−1 (98·34 Hz). This gives a ratio
of forcing to natural frequencies of V/v=2·19, putting us close to the parametric
resonance condition V/v=2·0 where one would expect the purely in-plane small
vibrations to be unstable, with the panel exhibiting parametrically excited transverse
vibrations. The variable parameter in this study is the amplitude of dynamic harmonic
forcing p1. At sufficiently large values of p1 one would expect the trivial in-plane forced
vibration solution to become unstable at a period-doubling bifurcation as the value of p1

crossed the familiar V-shaped instability boundary centred around V/v=2·0 on an
Ince–Strutt diagram (with the sharpness of the V-shape rounded off by damping as usual).

The chosen value of the proportional damping coefficient b corresponds to 1·6% of
critical damping. The value of the visco-elastic material damping coefficient b2 is chosen
(somewhat arbitrarily) to give a total (first mode) damping of 2% of critical. The algebra
behind this follows readily from linear analysis of the damped vibrations, which have
eigenvalues

l( j, k)= (−z( j, k)2 iz1− z2( j, k))v( j, k) with zv=
b+ b2( j2 + k2)2p4

2m
. (9)

From this it can be seen that the visco-elastic damping causes the modal damping (−Re(l))
to increase for higher modes, and the relevance of this will be considered later.

3. SPATIAL DISCRETIZATION OF THE MODEL

To study the dynamical system described by equations (1)–(4) we need to use a numerical
approximation method. The first step of any such approximation is to discretize spatially
in some way. Galerkin projection onto global basis functions is commonly used, but as
well as requiring rather regular domains, it has the further disadvantage of requiring a
considerable amount of algebraic manipulation (including explicit (spatial) integrations of
products of many trigonometric functions) for such a complicated set of governing
equations. One approach is to use symbolic computation packages, but even that is really
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practical only for a few basis functions. Baumgarten et al. [2] tackled the problem using
such a global Galerkin approach, but the boundary conditions in the stress function cannot
be satisfied exactly.

A spatial discretization by using finite difference methods is easier to implement and
more generally applicable. By approximating the spatial derivatives at a grid of points by
using the standard finite difference formulae, a set of second order ODEs for w is obtained
which can then be integrated forwards in time directly. One can easily generate an
arbitrarily large number of ODEs in this way. The number of equations generated is
limited only by the amount of work one is prepared to do to integrate the resulting ODEs
numerically.

3.1.    

The procedure for the initial spatial discretization is essentially standard numerical
approximation. However, it is described in some detail in this section in order to establish
the nomenclature ready for our subsequent developments from this basic platform.

Figure 2(a) shows the regular grid used over the panel to create the finite difference
model. Additional points outside the panel allow for the imposition of the boundary
conditions. The highest derivatives in the equations are associated with the biharmonic
operator, 94, whose finite difference approximation is given by the 13-point formula shown
pictorally in Figure 2(b).

There are two stages to the finite difference spatial discretization of the coupled
equations (1) and (2). First, equation (2) must be solved for the stress function F in terms
of the current displacement w. This is a straightforward procedure since this equation is
linear in F (given w), so after finite difference formulae have been applied at each point
of the grid, a linear (in F) equation is obtained:

FF= g(w, t). (10)

Here F is the matrix of coefficients obtained from the biharmonic operator and the
derivative boundary conditions on F, F is the vector (FI , FB ) of values of the stress
function at each internal (I) and boundary (B) grid point, and g(w, t) is the vector given
by the right side of equation (2) and the boundary conditions, equation (4).

The regular grid of Figure 2 has spacing h in either direction, and the fineness of the
grid is conveniently specified by n= a/h. The grid also extends one point outside the
physical area of the cylindrical panel with so-called ‘‘ghost points’’ (open circles) which
allow the same finite difference formulae to be used at each internal grid point (solid
circles). Equation (10) describes a linear relationship between the internal points and
boundary points (crosses). There are (n−1)2 equations from applying the biharmonic
operator at each internal point and an additional 4(n+1) equations included to account
for the boundary conditions (two at each boundary point). This gives a total set of
n2 +2n+5 equations. The total number of grid points (internal, external and boundary)
is n2 +6n+9. Thus, there are more grid points than equations. This anomaly can be
overcome by applying appropriate difference formulae at the four corners so as to avoid
the appearance of the extreme corner points. When using these formulae there are then
the same number of equations as unknowns.

It should be noted here that since the boundary conditions on F are all in the form of
second derivatives, then in the computed F there will be an arbitrary constant, and
arbitrary slopes in the x and y directions. This arbitrariness will be apparent in the matrix
F which will be singular, with a rank deficiency of 4. This matrix F can be inverted using
the usual pseudo-inverse method based on the singular value decomposition (for details
see reference [6]). Since only the second derivatives of F are used in equation (1) this



1

Finite difference grid

Template for

.

.

.

.

.

.

0

–1

n–1

n+1

n

1 n–1 n n+10
4

... ...–1

1

+1

–8

+20

–8

+1

+2 +2

–8 –8 +1+1

+2 +2

h4

.   .532

Figure 2. The upper diagram shows the finite difference grid used to cover the cylindrical panel. The lower
diagram illustrates the 13-point finite difference formula for the biharmonic operator.

arbitrariness is not important. Note that despite the computationally expensive nature of
the pseudo-inverse procedure, this needs to be performed only once, since the matrix F
always remains the same.

Once the values of F have been calculated at each internal grid point, the information
required for the discretization of equation (1) is available. The boundary conditions, given
by equation (3), on the displacement w are easier to impose than those for the stress
function. The boundary points all have a displacement of zero, and the second derivative
in the direction normal to each edge is zero. This implies that the values taken at the ghost
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points are simply the negative of the adjacent internal points. The finite difference
procedure can therefore be applied directly to each internal grid point for equation (1).
This will result in 2(n−1)2 second order ODEs, one for each wi , the displacement at each
internal grid point.

In order to accord with the mathematical literature which deals with first-order
differential equations of the form

ẋ=Ax, (11)

rather than the usual second-order equation of structural elastodynamics
mẍ+ cẋ+ kx= f, (12)

the usual procedure is adopted for replacing each second-order ODE by two first-order
ODEs by letting u2i−1 =wi and u2i = ẇi . (This leads to a slight difference of nomenclature
for the eigenvectors and eigenvalues. In the standard structural dynamics usage, the
eigenvectors are usually the free vibration mode shapes with associated algebraic
eigenvalues v2

j , where vj are the undamped natural frequencies. In the mathematical
description, the eigenvectors describe both modal displacements and velocities, and the
eigenvalues are complex and include the effects of damping).

One thus obtains an expression of the form

u̇=G(u, t), (13)

where u is the vector of all of the transverse displacements and velocities and G is the
function obtained by the finite difference procedure. This set of equations can be
numerically integrated, in the usual way, in order to explore the dynamical behaviour of
the approximated system. However, the size of the problem grows rapidly as n, which
controls the size of the grid, increases. Because of this problem of high dimensionality,
resulting from the finite difference spatial discretization, we explore in section 4 the
possibility of tackling the problem using dimension-reducing techniques. First, for
reasonably small n, we present some results from direct numerical integration.

3.2.       

For moderately-sized grids, it is feasible to numerically integrate the set of equations
obtained from the finite difference discretization. Using the shell model of section 2 and
putting n=6, one obtains a set of 50 first order ODEs describing the time evolution of
w and ẇ. Like most equations of structural dynamics, these ODEs are very stiff. However,
rather than adopting any of the more traditional methods of structural dynamic analysis,
such as the Newmark b or Hilber—Hughes–Taylor algorithms, we elected to use a
standard stiff integrator from the numerical analysis literature: a Rosenbrock method (see
e.g., reference [7]).

Although it would have been possible to apply numerical path-continuation methods
to the system of ODEs, such effort was felt to be unnecessary, since only a skeletal
description of the bifurcation structure is needed at this stage. (Indeed, the effort that such
a task would require is a major reason for looking at low-dimensional modelling
techniques.) The bifurcation diagram shown in Figure 3 was thus obtained by direct
time-integration, slowly ramping the magnitude of harmonic forcing p1. Obviously, only
stable solutions can be obtained by this method. Various initial conditions were chosen
in order to locate coexisting solutions. The displacement of the centre of panel (u25) at an
arbitrarily-chosen Poincaré (stroboscopic) section is plotted against p1.

The bifurcation pattern that emerges is quite complex, and thus we include a simple
schematic sketch of the basic structures in Figure 4(a) as an aid to understanding. Starting
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from the trivial w=0 solution at p1 =0, a stable path with zero out-of-plane amplitude
emerges. At a value of p1 1 250×103 N/m, this trivial solution undergoes its first
period-doubling bifurcation. (This is the value at which the parameter sweep crosses the
V-shaped Ince–Strutt instability boundary.) Unfortunately, the non-zero lateral
displacements of the period-doubled solution are so small at the chosen Poincaré section
that this bifurcation is not discernible on the main small-amplitude path running through
Figure 3. Further increases of p1 lead to further bifurcations of the transverse oscillations,
again sketched in Figure 4(a) but not visible in Figure 3.

Also present at p1 =0 is a stable large-amplitude, buckled solution (with u25 1 0·025 m).
A schematic of the static buckling behaviour is sketched in Figure 4(b). (At the chosen
value of static load p0 one thus also anticipates an unstable buckled configuration (B) to
exist between the trivial unbuckled (A) and stable buckled (C) states.) As the harmonic
forcing p1 is increased from zero, the structure exhibits small, directly-forced oscillations
about the large-amplitude buckled configuration (C). Further increases of p1 cause these
oscillations to bifurcate in some complex manner, whose exact details do not overly
concern us.

Another set of transverse oscillations exist which may be loosely described as cross-well
motions or snap-through oscillations. These are denoted (D) in Figures 3 and 4(c). These
are large period-two solutions whose motions extend either side of the small-amplitude
oscillations around the unbuckled and buckled positions in the course of a single
oscillation cycle. They do not exist in the static case and are born at a saddle-node
bifurcation near p1 =50×103 N/m. Again, for larger values of p1 these appear to undergo
bifurcation cascades leading to apparently chaotic motions.

Figure 3. The bifurcation diagram obtained by direct time-integration of the set of 50 first-order ODEs
generated from a finite difference grid of size n=6.
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Figure 4. Schematic sketches of the major features of (a) the bifurcation diagram under increasing harmonic
forcing amplitude, (b) the static buckling behaviour and (c) trajectories of significant orbits on the phase plane.

For values of p1 very much larger than shown, a number of the early orbits appear to
collide and annihilate at saddle-node bifurcations, as sketched in Figure 4(a). In
particular, the small oscillations around the unstable (B) and stable (C) buckled solutions
appear to collide, as do the large unstable period-two snap-through orbits (E) with the path
emerging from the initial Mathieu period-doubling from the trivial path (A).

The displacement fields for two of the oscillations are illustrated in Figure 5. Figure 5(a)
corresponds to point F, Figure 3, and illustrates a small (period 2) oscillation about the
buckled state (C). Figure 5(b) shows a large amplitude period 2 snap-through oscillation
(corresponding to point G, Figure 3).
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4. STRATEGIES FOR DIMENSION REDUCTION

The method described above for integrating the shell model uses standard numerical
procedures, but requires the forward time-integration of a set of equations of rather high
dimension. To investigate in detail the response of a complex dynamical system such as
the one described here, direct integration is often inadequate. For example, it is often
desirable to follow the path of a fundamental solution and identify rigorously the
bifurcations which it undergoes and to locate and follow the paths of unstable periodic

Figure 5. Two sample oscillations corresponding to points F and G of Figure 3, at p1 =200×103 N/m,
showing the displacement field, w, at eight equally spaced time intervals throughout two periods of the forcing;
0Q tQ 4p/v. (a) A symmetric period-two motion about the buckled state. (b) A large-amplitude snap-through
motion which buckles inwards and outwards with period 2.
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orbits by using path continuation methods. For high-dimensional systems like the one
obtained above, the work required to perform such tasks can be prohibitive. A
low-dimensional model may also be useful for quickly scanning large expanses of
parameter space for unstable or important phenomena which may then be studied in more
detail by a more realistic model.

If Galerkin’s method is used to project the governing equations onto just a few global
basis functions, then after some considerable algebraic effort, a low-dimensional dynamical
system can be produced which is amenable to full investigation. However, such an
approach implicitly assumes that the modes (or global basis functions) onto which the
Galerkin projection is made are the important ones and that the effects of the remaining
modes can be ignored.

To obtain a low-dimensional dynamical system using the finite difference approach one
could simply use an extremely coarse grid, but one would not expect this to lead to a good
approximation of the dynamics. We have two conflicting requirements then. On the one
hand, we would like to be able to use local spatial discretizations, such as finite differences,
because they are easy to implement and applicable to irregular domains. On the other
hand, the use of global basis functions offers the possibility of a low-dimensional
description which may be capable of capturing the essential dynamics.

Recently, there has been much interest in methods of reducing the dimension of
dynamical systems using the ideas of approximate inertial manifolds, employing an
approach known as the non-linear Galerkin method. To summarize this approach, first
we assume that we are given a PDE.

u̇=Au+F(u), (14)

where A is a dissipative, linear operator and F is the remaining, non-linear operator.
Usually there is a further assumption that the eigenfunctions of A form an orthogonal basis
{wi} such that Awi = liwi , with spectrum Re (l1)qRe (l2)q · · · qRe (ln )q · · · , such
that Re (ln ):−a as n:a. With the projection onto the span of the first m eigenvectors
denoted by P and the projection onto the remaining eigenvectors denoted by Q one can
rewrite equation (14) as the coupled set of equations

ṗ=Ap+PF(p+ q), q̇=Aq+QF(p+ q), (15)

where p=Pu and q=Qu is the decomposition of u into the two subspaces.
If one makes the assumption that an inertial manifold exists, one can assert the existence

of a function C such that q=C(p). This function defines how the behaviour of the higher
modes q is completely slaved to the lower modes p. For appropriate choices of the basis
functions and of m, (the number of the mode at which one splits u into p and q) this can
be shown to be a valid assumption in certain problems. One may then write the first
equation in (15) with full generality as

ṗ=Ap+PF(p+C(p)). (16)

This is a set of m ODEs. If one sets C(p)=0 one obtains the standard Galerkin projection
discussed above which is routinely used to truncate PDEs to a low-dimensional set of
ODEs. This can thus be seen as a crude first guess of the inertial manifold (if indeed one
exists) which may subsequently be corrected using various techniques outlined for example
by Debussche and Marion [8], and Russel et al. [4].

In order to go beyond that method to use the non-linear Galerkin method, one needs
to know the function C. To find this explicitly can be extremely difficult, but an estimate
of it may be obtained from the second of equations (15). Upon inserting the estimate for
C(p) into equation (16), this m-dimensional set of ODEs should give a better description
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of the evolution of p than the simple Galerkin truncation. A method of estimating C(p)
is described in section 4.3.

The essential requirement for showing the existence of an inertial manifold is the
presence of a spectral gap: i.e., there must be a condition that −Re (lk )�−Re (lk+1) for
some k. If it can be shown that the linear contraction from A for the higher modes
dominates over any expansion in the non-linear operator F, the low-dimensional
description represented by equation (16) will be sufficient. We consider the existence of
such a gap for the problem at hand in the following section.

4.1.  -      

In this section, it is shown how the essential ideas of non-linear Galerkin methods (based
on the usual global Galerkin projection onto eigenmodes of a linear operator) may be
adapted to apply, under certain conditions, to the alternative spatial discretization using
finite differences. After the finite difference discretization of a shell model, we saw in section
3.1 that a (high-dimensional) set of ODEs, equation (13), was obtained. This equation
could be rewritten as (cf. equation (14))

u̇=Au+F(u), (17)

where in this case A is the linear (matrix) operator obtained from the finite difference
discretization of the linear part of the original PDE for w (equation (1)) and F is the
remaining non-linear part arising from the non-linear part of equation (1) after having
solved equation (2) for F in terms of w. The linear part, A, consists of the matrices arising
from the finite difference discretization of the biharmonic operator and the linear and
visco-elastic damping terms. This is a simple matrix to compute for various values of the
grid size.

The essential characteristic that must be satisfied if the linear operator is to be dissipative
is that the real parts of all eigenvalues must be less than zero. Similarly, for a spectral gap
condition to hold one requires that there is a large enough gap in the real parts of the
spectrum of A. Figure 6 shows the spectrum of the operator A, based upon numerical
investigation of the finite difference model with a grid of size n=6. Also shown is the
spectrum (as given by equation (9)) based upon simple linear analysis of the governing
PDEs about the trivial solution. Quantitative numerical discrepancies between the finite
difference and the explicit results may be due to errors in the approximation of high
derivatives by the finite difference procedure, but both are in qualitative agreement about
the form of the spectrum.

Clearly all eigenvalues have negative real parts as required. Note however that in this
problem it is the inclusion of the visco-elastic material damping that brings the possibility
of a spectral gap. If only proportional damping is included the spectrum is flat, all modes
being damped equally and no gap can exist. By including the material damping, higher
modes experience higher damping and thus for high enough mode number, a spectral gap
will exist, although there is no evident ‘‘large’’ gap over the mode numbers shown. To
answer exactly how large a spectral gap is needed rests upon proving whether or not the
linear contraction for the higher modes dominates over any expansion in the non-linear
part of the equation and this involves considerable analytical effort for non-trivial PDEs
such as the ones of this model, and we do not attempt any such rigorous analysis here.

4.2.       

The simplest form of a two-level procedure for reducing dimension is, as discussed
above, the ordinary or ‘‘flat’’ Galerkin projection in which the higher modes are set to zero.
By looking at the procedure for reducing a PDE, we develop the analogous procedure for
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Figure 6. The real part of the eigenvaue spectrum for small oscillations about the trivial solution. Modes are
ranked by frequency along the abscissa. (There is a multiplicity of two for each vibration mode caused by writing
the generalised eigenvalue problem of the second-order differential equations in standard first-order form). The
analytical results are obtained from equation (9). The numerical results are obtained from the matrix for the
n=6 finite difference grid. Also shown is the spectrum that would result if visco-elastic damping were not
included.

the reduction of the large set of ODEs produced by finite differences. If a PDE can be
written in the form of equation (14) and the eigenfunctions of A are all real and orthogonal,
then the Galerkin projection onto the first m eigenfunctions of the linear operator A gives
a lower dimensional approximation to the original equation in the form of a set of real
ODEs. If the eigenfunctions of A are fi then one can write u in terms of this basis as

u(x, t)= s
a

j=1

aj (t)fj (x), (18)

where x= {x, y} is the space variable and t is time. Using a Galerkin projection we select
a finite m and then take suitable inner products of equation (17) with each fi ,
(i=1, 2, . . . , m) in turn. This gives the set of m ODEs

ȧj�fj , fi�= aj�Afj , fi�+WF0s ajfj1 , fiw, i=1, 2, . . . , m. (19)

Here we are concerned instead with the case of a large set of ODEs, equation (17), where
the linear operator A is just a matrix (N×N, say), rather than an infinite-dimensional
operator. Essentially the same procedure can be carried out in this case. Instead of finding
the eigenfunctions of a linear differential operator, one now needs to find the N
eigenvectors of a matrix. These eigenvectors give the mode shapes in terms of ui , the vectors
of transverse displacement and velocity of the panel at each node point on its surface. From
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the convenient local space discretization one thus obtains the global (numerical) mode
shapes for further use.

A complication which arises is that the eigenvectors of the matrix need be neither real
nor orthogonal in general. If one simply proceeds with a Galerkin projection onto a
complex basis, the result would be a complex set of ODEs. Since it is more convenient
to deal with real ODEs, the first step in the procedure is to form a new real basis which
spans the same space as the complex one. The eigenvectors of A are all complex conjugate
pairs of the form

(nR +inI )k , (nR −inI )k . (20)

A new real basis in which each pair of real vectors (w2k−1, w2k ) spans the subspace spanned
by one of the complex conjugate pairs of eigenvectors is given by

w2k−1 = (nR + nI )k , w2k =(nR − nI )k , (21)

and one additionally defines the matrix W to be the matrix whose columns are the vectors
wi . Note that W−1AW is here a block diagonal matrix with blocks of size 2 rather than
a diagonal matrix of eigenvalues.

As in the conventional Galerkin method discussed above, the first step in the procedure
is to write the solution u in terms of the new basis wi . This is just a change of variables
which one can write in matrix form as

u=Wr, (22)

where r is the new set of (time-dependent) variables. Next one can split the problem into
low and high (or slowly- and quickly-contracting) modes, based upon the real part of their
eigenvalues. One orders the basis wi so that the first m columns arise from the least
contracting eigenvectors and the remaining columns arise from the most contracting. Then
one can split the new variable r as, r=(p=q). Similarly one can split the matrix W into
the first m columns Wp , and the remaining columns Wq , so that W=(Wp /Wq ). One can
then write

u=(Wp /Wq )0pq1=Wpp+Wqq. (23)

Substituting this into the original set of ODEs, equation (14), gives

Wpṗ+Wqq̇=AWpp+AWqq+F(Wpp+Wqq). (24)

The mixture of ṗ and q̇ terms on the left side of this equation could, if the wi were
orthogonal, be separated by taking inner products with each wi in turn, giving a new split
system with one equation having only ṗ terms on the left side and the other only q̇ terms.
To achieve the same splitting with the non-orthogonal basis one can use instead a weighted
residual method, in which the basis functions are different from those with which we take
the inner product. An appropriate choice in this case is to use Zp , the matrix formed by
columns which span the null space of Wq , and Zq , the matrix formed by columns which
span the null space of Wp . Taking inner products with these vectors splits the equation
in the desired way:

ZT
p Wpṗ=ZT

p AWpp+ZT
p AWqq+ZT

p F(Wpp+Wqq),

ZT
q Wqq̇=ZT

q AWpp+ZT
q AWqq+ZT

q F(Wpp+Wqq). (25)
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These can be rearranged to give two sets of partially-decoupled equations,

ṗ=Xppp+Xpqq+Yp (Wpp+Wqq),

q̇=Xqpp+Xqqq+Yq (Wpp+Wqq), (26)

where Xpp , Xpq , Xqp and Xqq are the appropriate matrices and Yp and Yq are the non-linear
terms obtained from a simple rearrangement of equation (25).

Having partially decoupled the large set of ODEs into a small set (the ṗ equations) and
a large set (the q̇ equations) the simplest approximation one can make is to set the most
contracting modes to zero: i.e., q=0. This results in a small set of ODEs describing the
time evolution of the least contracting modes:

ṗ=Xppp+Yp (Wpp). (27)

As an example of this simplest two-level splitting of a finite difference approximation,
our shell model is again considered, with n=6. Recall that, after the initial space
discretization, this gave a set of 50 ODEs, the direct integration of which was shown in
Figure 3. In comparison, Figure 7 shows the result of performing a severe truncation
projecting onto just the first pair of modes. The results are obtained in the same way as
before, with a slow parameter sweep up and down in the external forcing, p1, plotting the
displacement of the centre of the panel at the beginning of each forcing cycle. Even this
severe truncation manages to capture many of the important features shown in Figure 3:
for example, the creation of the large period-two snap-through motions at
p1 1 50×103 N/m at a saddle-node bifurcation, followed by a period doubling of this
solution path at around p1 1 300×103 N/m, and the period-two oscillations around the

Figure 7. The bifurcation diagram for the n=6 grid after a flat projection onto the first pair of modes.
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Figure 8. The bifurcation diagram from a flat projection of the n=6 finite difference model onto the first three
modes.

buckled state (C). In the low-dimensional approximation these latter solutions are lost at
p1 1 250×103 N/m. It can be expected that the approximation will become worse as the
non-linearity becomes larger, which will occur when the external forcing becomes large.
It should be noted that not only is this two-degree-of-freedom approximation 25 times less
demanding computationally than integrating the original discretization, but speed gains
are also achieved due to the fact that the resulting set does not require the more costly
stiff integrator.

Figure 8 shows the result of using a higher-dimensional approximation from the same
discretization, this time projecting onto the space spanned by the first three pairs of
complex conjugate eigenvectors of the linear operator A, giving a six-degree-of-freedom
approximation. Again, the main features present in the original high-dimensional
dynamical system are captured. The saddle-node bifurcation leading to the large
snap-through motions is delayed until a higher value of the control p1, but the
period-doubling bifurcation along the path is again reproduced in this approximation. The
period-two oscillations around a buckled position are again present, but in this case do
not completely disappear as p1 is increased.

4.3. -        

As discussed earlier in this section, under the assumption that the dynamical system
being studied has a lower-dimensional inertial manifold, then for an appropriate two-level
splitting into ‘‘low modes’’ p and ‘‘high modes’’ q there will exist a function C such that
q=C(p). As a consequence, the long-term dynamics of the system can be completely
determined by the first, lower-dimensional set of ODEs with the remaining passive
directions completely slaved to the active ones.
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A simple method, introduced by Foias et al. [3] for approximating the function C (upon
assuming that such a function exists) is based on integrating the equation for q by using
the implicit Euler method. If a suitable time step, t say, is chosen, a contraction mapping
for q results, with the fixed point of the mapping being the (invariant) inertial manifold.
This procedure for constructing an approximate inertial manifold may be used with the
set of equations derived by finite differences, and the subsequent two-level splitting
described above, resulting in equation (26).

The first stage is to use an implicit Euler step on the least contracting modes, say with
an initial condition q0 =0, which gives an approximation q̂ to the solution at time t:

q̂= tXqpp+ tXqqq̂+ tYq (Wpp+Wqq̂). (28)

This can be rearranged to give a mapping for q,

q̂ (t[I− tXqq ]−1(Xqpp+Yq (Wpp+Wqq̂)), (29)

the first iterate of which, with an initial condition of q=0 (the ‘‘flat’’ Galerkin solution)
gives an expression for C:

CA (p)= t[I− tXqq ]−1(Xqpp+Yq (Wpp)). (30)

Figure 9. The bifurcation diagram obtained by using the non-linear Galerkin procedure to project onto the first
two modes.
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With this last expression for C substituted into the differential equation for modes p
from equation (26), one has again arrived at a set of equations, of the dimension of p,
approximating the behaviour of the entire set of differential equations. Upon using a
splitting, as before, with the 50 ODEs generated by the finite differences divided between
the two most contracting (p) modes and the remaining 48 (q) modes, this non-linear
Galerkin procedure was performed, and the resulting set of two ODEs were investigated.
The resulting bifurcation diagram, Figure 9, is remarkably similar to that for the simple
two-mode Galerkin truncation of Figure 7. Extra work is involved in trying to construct
an approximate inertial manifold, and since the ODEs which must be numerically
integrated are more complicated, the integrations are more computationally expensive. No
apparent gain has been made as a result of this extra work. In this case, at least, a flat
Galerkin approximation appears sufficient to reduce the dimension of a set of ODEs
produced from a spatial discretization. However, it is perhaps evident from the spectrum
of Figure 6 that a splitting after mode two does not correspond to a spectral gap and
further work comparing the flat and non-linear Galerkin methods at higher level splittings
on this or other models may reveal occasions when the non-linear method is advantageous.

5. CONCLUSIONS AND FURTHER WORK

In the study of many real dynamical systems arising in engineering, spatial
discretizations such as finite differences or finite elements are more appropriate than
Galerkin projection onto global basis functions. These spatial discretization methods do
however have the drawback that they produce high-dimensional sets of ODEs from the
original PDEs.

We have considered two methods for reducing the size of the dynamical system produced
by a spatial discretization (finite difference in this case, but the method could just as easily
be applied to other methods such as finite elements). In both cases the reduction in
dimension is achieved by performing a two-level splitting in which ‘‘numerical mode
shapes’’ determined from the structure of the linear parts of the large set of ODEs are used
in an analogous way to mode shapes in the standard global Galerkin method. The ODEs
are projected onto a small number of those modes which (linearly) contract the least and
are therefore likely to be dynamically the most important. A further development of this
two-level splitting, described in section 4.3, is to try to construct an approximate inertial
manifold following closely the work on non-linear Galerkin methods.

Results show that the reduced dynamical systems produced by these new methods
reproduce the main features (multiple solutions and the bifurcations between them) of the
original system dynamics. (Here, strictly speaking, ‘‘original system’’ refers to the large set
of ODEs produced by the original spatial discretization, rather than the PDEs, but this
is not an issue fundamental to the methods presented). Dynamical systems with dimension
low enough to be studied in great depth have thus been produced from systems of
equations which are expensive to integrate even numerically. As such, these methods
suggest an approach allowing detailed investigation of problems which are usually
considered too large.

En route we have employed a number of techniques which, although standard in the
mathematical and numerical analysis literature, have not been commonly used together
in structural analysis: the use of the Rosenbrock method for integration of stiff equations;
the use of singular value decomposition for inversion of the matrices arising from the finite
difference scheme; the flat Galerkin projection of the fully non-linear equations onto a few
numerical eigenvectors. The most distinctive innovation was the attempt to apply the
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non-linear Galerkin method, using the techniques of inertial manifold approximation.
However, although the method produced a low-dimensional model capturing the major
features of the full non-linear dynamics, for the specific problem studied there appeared
to be no significant advantage in using the fully non-linear Galerkin approach instead of
a straightforward flat Galerkin projection onto the numerical eigenvectors. Determining
whether use of the non-linear Galerkin approach is justified (i.e., whether an inertial
manifold exists, and if so, of what dimension), is difficult in such problems. This, along
with the extra effort involved in producing the corrected, non-linear Galerkin
approximation, leads us to suspect that this extra step is perhaps unlikely to be widely
useful in the study of non-linear elastodynamics.
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